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Received 22 June 1982 

Abstract. An exact solution to the Einstein-Dirac equations is obtained for a space-time 
with metric of the anisotropic cosmological type, the gravitational field having as its source 
a (massive) Dirac electron field. 

1. Introduction 

To date there are very few exact, ‘non-ghost’ solutions to the Einstein-Dirac equations 
in which the Dirac field possesses rest mass-a ghost solution is one for which the 
energy-momentum tensor of the Dirac field vanishes identically. Most (if not all) of 
the known solutions are ‘ghost’ solutions or solutions for a neutrino field with rest mass 
(see for example Krori et a1 1982). The solution presented here, although very simple 
in form, does represent a ‘non-ghost’ massive electron field. 

2. Derivation of the equations and their solution 

We assume the metric to have the form 

where the P, are functions of t only. We assume also that the Dirac current vector, 
jm, and energy-momentum tensor, T“’, are both invariant under the isometries of 
(l), i.e. that the Lie derivatives of both j ”  and T“’ with respect to the three vectors 
XI = a/&, X 2  = 8/ay and X3 = 8 / 3 2  must vanish. This implies (see Henneaux 1980) 
that 

L , $  = iki3 (i = 1 , 2 , 3 )  ( 2  1 

where L is the Lie derivative, 

is the Dirac bispinor (see RK) and the ki are constants. 
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To carry forward our calculation we now introduce a Newman-Penrose (NP) tetrad 
(see RK) 

(3) 
1 

(m,) = : (o ,o ,  -ep2, -i e'.). 
J 2  

The non-zero spin-coefficients for (3) are 

1 .  1 . .  1 .  
u = - A  =-(P3-P2), E =-y=-P1, (4) 

2 J2 2 J 2  
p = - p = - - ( p  2 + P 3 ) ,  

2 J 2  

where Pi = dPi/dt. 
The NP equations then give 
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411 = (k e-'/&)[2(k2 e-P2+ik3 e-")(OoU1- v0V1) 

+ 2 ( k 2  eCP2-ik3 e-'3)(UoOt- V O ~ I )  

+ ( l /L)(VoU1- UOVl+ VOOI - OOVd], 
,I = (k e - ' / 3 h L ) (  VoU1 - UOVl + voO1 - U0V1), 
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where the Einstein equations are written as Gas = -8kT,,, P = P I  + P2 + P3, X, = 
e-P/2 U,, and Yp = e-p'2V,. 

The Dirac equations take the form (see RK) 

o o - i k l  e-P'Uo+(-ik2 e -PZ+k3  e-'')U1 = - ( i / L ) v l ,  

o l + i k l  e-P 'U1-( ik2e-P2+k3 e-")Uo= ( i /L)Vo,  

Vo-ikl e -P 'Vo+( - ik2e -P2+k3  e-")V1 = - ( i /L )Ol ,  

V ,  + ik, e-', V1 - (ik2 e-', + k3 e-',) Vo = (i /L)Oo. 

(8) 

If we take the k ,  to be non-zero we find, using ( 5 ) ,  (7)  and (8), that U, is proportional 
to V, (so the field is a massive neutrino field, or type I1 field of RK) and that the dPq 
and A vanish, making the field a 'ghost' field. In the following we take ki = 0, i = 1, 
2 ,  3. The Dirac equations, (8), are now easily solved to give 

u0 = a. e"/'- + b o  U ,  = a , + b , 
v0 -1 -6, ei:!L +a , e-i:lL, v1 = 6" elr/L - C O  e-if:L, 

( 9 )  

where the a's and b's are complex constants. 
The Einstein equations are 

PI + P : - P 2 P 3  = -c e-', 

P3 + P:  - P2P1 = -c e--', 

P2 + P :  - P1P3 = -c e-', 

P I P 2  + P I P 3  + P 2 P 3  = 2c e-'? 
(10) 

where c = (4d'2k/L)(aodo+Uldl -bo~o-b161)-for a 'non-ghost' solution we 
require c # 0. 

Equations (10)  are now simply solved (for non-trivial, 'non-ghost' solutions) to give 
the following two solutions (the freedom to rescale x ,  y,  z has been used to eliminate 
three integration constants): 

( 1 1 )  
113 213 exp(Pl) = t5M) t , i = 1, 2 ,  3 ,  

t - CY: +r:+ Y2Y3)1'2 
r + ( Y ; +  Y:+Y2Y3) 

pi =;p+- y r  1/2  In ( 
[3(Y:+Y:+Y2Y3)1 

e' = exp(P1 + p 2  + P ~ )  = 1c[t2 - ( y :  + y :  + y 2 y 3 ) ] ,  (12) 
where i = 1, 2 ,  3 and y 1  + y 2  + y 3  = 0.  

In either case the Dirac field takes the form 
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