An exact solution of the Einstein-Dirac equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1983 J. Phys. A: Math. Gen. 16317
(http://iopscience.iop.org/0305-4470/16/2/014)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 17:00

Please note that terms and conditions apply.

An exact solution of the Einstein-Dirac equations

C J Radford and A H Klotz
Department of Applied Mathematics, University of Sydney, Sydney 2006 Australia

Received 22 June 1982

Abstract

An exact solution to the Einstein-Dirac equations is obtained for a space-time with metric of the anisotropic cosmological type, the gravitational field having as its source a (massive) Dirac electron field.

1. Introduction

To date there are very few exact, 'non-ghost' solutions to the Einstein-Dirac equations in which the Dirac field possesses rest mass-a ghost solution is one for which the energy-momentum tensor of the Dirac field vanishes identically. Most (if not all) of the known solutions are 'ghost' solutions or solutions for a neutrino field with rest mass (see for example Krori et al 1982). The solution presented here, although very simple in form, does represent a 'non-ghost' massive electron field.

2. Derivation of the equations and their solution

We assume the metric to have the form

$$
\begin{equation*}
\mathrm{d} s^{2}=\mathrm{d} t^{2}-\mathrm{e}^{2 P_{1}} \mathrm{~d} x^{2}-\mathrm{e}^{2 P_{2}} \mathrm{~d} y^{2}-\mathrm{e}^{2 P_{3}} \mathrm{~d} z^{2} \tag{1}
\end{equation*}
$$

where the P_{i} are functions of t only. We assume also that the Dirac current vector, j^{α}, and energy-momentum tensor, $T^{\alpha \beta}$, are both invariant under the isometries of (1), i.e. that the Lie derivatives of both j^{α} and $T^{\alpha l}$ with respect to the three vectors $X_{1}=\partial / \partial x, X_{2}=\partial / \partial y$ and $X_{3}=\partial / \partial z$ must vanish. This implies (see Henneaux 1980) that

$$
\begin{equation*}
L_{X}, \psi=i k_{j} \psi \quad(j=1,2,3) \tag{2}
\end{equation*}
$$

where L is the Lie derivative,

$$
\psi=\binom{u_{A}}{\bar{v}^{B}}
$$

is the Dirac bispinor (see RK) and the k_{i} are constants.

To carry forward our calculation we now introduce a Newman-Penrose (NP) tetrad (see RK)

$$
\begin{align*}
& \left(l_{\alpha}\right)=\frac{1}{\sqrt{2}}\left(1,-\mathrm{e}^{P_{1}}, 0,0\right), \quad\left(n_{\alpha}\right)=\frac{1}{\sqrt{2}}\left(1, \mathrm{e}^{P_{1}}, 0,0\right), \\
& \left(m_{\alpha}\right)=\frac{1}{\sqrt{2}}\left(0,0,-\mathrm{e}^{P_{2}},-\mathrm{i} \mathrm{e}^{P_{3}}\right) . \tag{3}
\end{align*}
$$

The non-zero spin-coefficients for (3) are
$\rho=-\mu=-\frac{1}{2 \sqrt{2}}\left(\dot{P}_{2}+\dot{P}_{3}\right), \quad \sigma=-\lambda=\frac{1}{2 \sqrt{2}}\left(\dot{P}_{3}-\dot{P}_{2}\right), \quad \varepsilon=-\gamma=\frac{1}{2 \sqrt{2}} \dot{P}_{1}$,
where $\dot{P}_{i}=\mathrm{d} P_{i} / \mathrm{d} t$.
The NP equations then give
$\phi_{01}=\phi_{12}=0, \quad \phi_{02}=\phi_{20}, \quad \phi_{00}=\phi_{22}$,
$\ddot{P}_{1}+\dot{P}_{1}^{2}-\dot{P}_{2} \dot{P}_{3}=-4 \phi_{11}, \quad \quad \ddot{P}_{2}+\dot{P}_{2}^{2}-\dot{P}_{1} \dot{P}_{3}=2\left(\phi_{02}-\phi_{00}\right)$,
$\ddot{P}_{3}+\dot{P}_{3}^{2}-\dot{P}_{1} \dot{P}_{2}=-2\left(\phi_{02}+\phi_{00}\right), \quad \dot{P}_{1} \dot{P}_{2}+\dot{P}_{1} \dot{P}_{3}+\dot{P}_{2} \dot{P}_{3}=2\left(\phi_{11}+\phi_{00}+3 \Lambda\right)$.
Now (2) implies that dyad components of the bispinor ($u_{0}, u_{1}, v_{0}, v_{1}$) must take the form

$$
\begin{equation*}
u_{p}=\exp \left[\mathrm{i}\left(k_{1} x+k_{2} y+k_{3} z\right)\right] X_{p}, \quad v_{p}=\exp \left[-\mathrm{i}\left(k_{1} x+k_{2} y+k_{3} z\right)\right] Y_{p} \tag{6}
\end{equation*}
$$

where $p=0,1$, the X_{p} and Y_{p} being functions of t alone.
Using (6) we can (via the Einstein equations) calculate the $\phi_{p q}$ (see RK):

$$
\begin{align*}
& \phi_{00}=\sqrt{2} k \mathrm{e}^{-P} {\left[4 k_{1} \mathrm{e}^{-P_{1}}\left(U_{0} \bar{U}_{0}-V_{0} \bar{V}_{0}\right)+\left(k_{2} \mathrm{e}^{-P_{2}}-\mathrm{i} k_{3} \mathrm{e}^{-P_{3}}\right)\left(U_{0} \bar{U}_{1}-V_{0} \bar{V}_{1}\right)\right.} \\
&+\left(k_{2} \mathrm{e}^{-P_{2}}+\mathrm{i} k_{3} \mathrm{e}^{-P_{3}}\right)\left(\bar{U}_{0} U_{1}-\bar{V}_{0} V_{1}\right) \\
&\left.+(1 / L)\left(V_{0} U_{1}-U_{0} V_{1}+\bar{V}_{0} \bar{U}_{1}-\bar{U}_{0} \bar{V}_{1}\right)\right], \\
& \phi_{22}=\sqrt{2} k \mathrm{e}^{-P} {\left[-4 k_{1} \mathrm{e}^{-P_{1}}\left(U_{1} \bar{U}_{1}-V_{1} \bar{V}_{1}\right)+\left(k_{2} \mathrm{e}^{-P_{2}}-\mathrm{i} k_{3} \mathrm{e}^{-P_{3}}\right)\left(U_{0} \bar{U}_{1}-V_{0} \bar{V}_{1}\right)\right.} \\
&+\left(k_{2} \mathrm{e}^{-P_{2}}+\mathrm{i} k_{3} \mathrm{e}^{-P_{3}}\right)\left(\bar{U}_{0} U_{1}-\bar{V}_{0} V_{1}\right) \\
&\left.+(1 / L)\left(V_{0} U_{1}-U_{0} V_{1}+\bar{V}_{0} \bar{U}_{1}-\bar{U}_{0} \bar{V}_{1}\right)\right], \\
& \phi_{01}=\left(k \mathrm{e}^{-P} / \sqrt{2}\right)\left[2 k_{1} \mathrm{e}^{-P_{1}}\left(U_{0} \bar{U}_{1}-V_{0} \bar{V}_{1}\right)+3\left(k_{2} \mathrm{e}^{-P_{2}}+\mathrm{i} k_{3} \mathrm{e}^{-P_{3}}\right)\left(U_{0} \bar{U}_{0}-V_{0} \bar{V}_{0}\right)\right. \\
&+\left(k_{2} \mathrm{e}^{-P_{2}}+\mathrm{i} k_{3} \mathrm{e}^{-P_{3}}\right)\left(U_{1} \bar{U}_{1}-V_{1} \bar{V}_{1}\right)+\frac{1}{2} \mathrm{i}\left(2 \dot{P}_{1}-\dot{P}_{2}-\dot{P}_{3}\right)\left(U_{0} \bar{U}_{1}-V_{0} \bar{V}_{1}\right) \\
&\left.+\frac{1}{2}\left(\dot{P}_{2}-\dot{P}_{3}\right)\left(\bar{U}_{0} U_{1}-\bar{V}_{0} V_{1}\right)\right], \tag{7}\\
& \phi_{12}=\left(k \mathrm{e}^{-P} / \sqrt{2}\right)\left[2 k_{1} \mathrm{e}^{-P_{1}}\left(U_{0} \bar{U}_{1}-V_{0} \bar{V}_{1}\right)+3\left(k_{2} \mathrm{e}^{-P_{2}}+\mathrm{i} k_{3} \mathrm{e}^{-P_{3}}\right)\left(U_{1} \bar{U}_{1}-V_{1} \bar{V}_{1}\right)\right. \\
&+\left(k_{2} \mathrm{e}^{-P_{2}}+\mathrm{i} k_{3} \mathrm{e}^{-P_{3}}\right)\left(U_{0} \bar{U}_{0}-V_{0} \bar{V}_{0}\right)-\frac{1}{2} \mathrm{i}\left(2 \dot{P}_{1}-\dot{P}_{2}-\dot{P}_{3}\right)\left(U_{0} \bar{U}_{1}-V_{0} \bar{V}_{1}\right) \\
&\left.\quad-\frac{1}{2} \mathrm{i}\left(\dot{P}_{2}-\dot{P}_{3}\right)\left(\bar{U}_{0} U_{1}-\bar{V}_{0} V_{1}\right)\right], \\
& \phi_{02}=\sqrt{2} k \mathrm{e}^{-P}\left\{2\left(k_{2} \mathrm{e}^{-P_{2}}+\mathrm{i} k_{3} \mathrm{e}^{-P_{3}}\right)\left(U_{0} \bar{U}_{1}-V_{0} \bar{V}_{1}\right)\right. \\
&\left.+\frac{1}{2} \mathrm{i}\left(\dot{P}_{3}-\dot{P}_{2}\right)\left[\left(U_{0} \bar{U}_{0}-V_{0} \bar{V}_{0}\right)-\left(U_{1} \bar{U}_{1}-V_{1} \bar{V}_{1}\right)\right]\right\},
\end{align*}
$$

$$
\begin{aligned}
& \phi_{11}=\left(k \mathrm{e}^{-P} / \sqrt{2}\right)\left[2\left(k_{2} \mathrm{e}^{-P_{2}}+\mathrm{i} k_{3} \mathrm{e}^{-P_{3}}\right)\left(\bar{U}_{0} U_{1}-\bar{V}_{0} V_{1}\right)\right. \\
&+2\left(k_{2} \mathrm{e}^{-P_{2}}-\mathrm{i} k_{3} \mathrm{e}^{-P_{3}}\right)\left(U_{0} \bar{U}_{1}-V_{0} \bar{V}_{1}\right) \\
&\left.+(1 / L)\left(V_{0} U_{1}-U_{0} V_{1}+\bar{V}_{0} \bar{U}_{1}-\bar{U}_{0} \bar{V}_{1}\right)\right] \\
& \Lambda=\left(k \mathrm{e}^{-P} / 3 \sqrt{2} L\right)\left(V_{0} U_{1}-U_{0} V_{1}+\bar{V}_{0} \bar{U}_{1}-\bar{U}_{0} \bar{V}_{1}\right),
\end{aligned}
$$

where the Einstein equations are written as $G_{\alpha \beta}=-8 k T_{\alpha \beta}, P=P_{1}+P_{2}+P_{3}, X_{p}=$ $\mathrm{e}^{-P / 2} U_{p}$, and $Y_{p}=\mathrm{e}^{-P / 2} V_{p}$.

The Dirac equations take the form (see RK)

$$
\begin{align*}
& \dot{U}_{0}-\mathrm{i} k_{1} \mathrm{e}^{-P_{1}} U_{0}+\left(-\mathrm{i} k_{2} \mathrm{e}^{-P_{2}}+k_{3} \mathrm{e}^{-P_{3}}\right) U_{1}=-(\mathrm{i} / L) \bar{V}_{1}, \\
& \dot{U}_{1}+\mathrm{i} k_{1} \mathrm{e}^{-P_{1}} U_{1}-\left(\mathrm{i} k_{2} \mathrm{e}^{-P_{2}}+k_{3} \mathrm{e}^{-P_{3}}\right) U_{0}=(\mathrm{i} / L) V_{0}, \\
& \dot{V}_{0}-\mathrm{i} k_{1} \mathrm{e}^{-P_{1}} V_{0}+\left(-\mathrm{i} k_{2} \mathrm{e}^{-P_{2}}+k_{3} \mathrm{e}^{-P_{3}}\right) V_{1}=-(\mathrm{i} / L) \bar{U}_{1}, \tag{8}\\
& \dot{V}_{1}+\mathrm{i} k_{1} \mathrm{e}^{-P_{1}} V_{1}-\left(\mathrm{i} k_{2} \mathrm{e}^{-P_{2}}+k_{3} \mathrm{e}^{-P_{3}}\right) V_{0}=(\mathrm{i} / L) \bar{U}_{0} .
\end{align*}
$$

If we take the k_{i} to be non-zero we find, using (5), (7) and (8), that U_{p} is proportional to V_{p} (so the field is a massive neutrino field, or type II field of RK) and that the $\phi_{p q}$ and Λ vanish, making the field a 'ghost' field. In the following we take $k_{i}=0, i=1$, 2,3 . The Dirac equations, (8), are now easily solved to give

$$
\begin{array}{ll}
U_{0}=a_{0} \mathrm{e}^{\mathrm{i} t / L}+b_{0} \mathrm{e}^{-\mathrm{i} t / L}, & U_{1}=a_{1} \mathrm{e}^{\mathrm{i} t / L}+b_{1} \mathrm{e}^{-\mathrm{i} t / L} \\
V_{0}=-\bar{b}_{1} \mathrm{e}^{\mathrm{it} / L}+\bar{a}_{1} \mathrm{e}^{-\mathrm{i} t / L}, & V_{1}=\bar{b}_{0} \mathrm{e}^{\mathrm{i} \mathrm{t} / L}-\bar{a}_{0} \mathrm{e}^{-\mathrm{i} t / L}, \tag{9}
\end{array}
$$

where the a 's and b 's are complex constants.
The Einstein equations are

$$
\begin{array}{ll}
\ddot{P}_{1}+\dot{P}_{1}^{2}-\dot{P}_{2} \dot{P}_{3}=-c \mathrm{e}^{-P}, & \ddot{P}_{2}+\dot{P}_{2}^{2}-\dot{P}_{1} \dot{P}_{3}=-c \mathrm{e}^{-P} \\
\ddot{P}_{3}+\dot{P}_{3}^{2}-\dot{P}_{2} \dot{P}_{1}=-c \mathrm{e}^{-P}, & \dot{P}_{1} \dot{P}_{2}+\dot{P}_{1} \dot{P}_{3}+\dot{P}_{2} \dot{P}_{3}=2 c \mathrm{e}^{-P} \tag{10}
\end{array}
$$

where $c=(4 \sqrt{2} k / L)\left(a_{0} \bar{a}_{0}+a_{1} \bar{a}_{1}-b_{0} \bar{b}_{0}-b_{1} \bar{b}_{1}\right)$-for a 'non-ghost' solution we require $c \neq 0$.

Equations (10) are now simply solved (for non-trivial, 'non-ghost' solutions) to give the following two solutions (the freedom to rescale x, y, z has been used to eliminate three integration constants):

$$
\begin{align*}
& \exp \left(P_{i}\right)=\left(\frac{3}{2}|c|\right)^{1 / 3} t^{2 / 3}, \quad i=1,2,3, \tag{11}\\
& P_{i}=\frac{1}{3} P+\frac{\gamma_{i}}{\left[3\left(\gamma_{2}^{2}+\gamma_{3}^{2}+\gamma_{2} \gamma_{3}\right)\right]^{1 / 2}} \ln \left(\frac{t-\left(\gamma_{2}^{2}+\gamma_{3}^{2}+\gamma_{2} \gamma_{3}\right)^{1 / 2}}{t+\left(\gamma_{2}^{2}+\gamma_{3}^{2}+\gamma_{2} \gamma_{3}\right)^{1 / 2}}\right), \\
& \mathrm{e}^{P}=\exp \left(P_{1}+P_{2}+P_{3}\right)=\frac{3}{2} c\left[t^{2}-\left(\gamma_{2}^{2}+\gamma_{3}^{2}+\gamma_{2} \gamma_{3}\right)\right], \tag{12}
\end{align*}
$$

where $i=1,2,3$ and $\gamma_{1}+\gamma_{2}+\gamma_{3}=0$.
In either case the Dirac field takes the form

$$
\psi=\binom{u_{\mathrm{A}}}{\bar{v}^{B}}=\mathrm{e}^{-P / 2}\left(\begin{array}{l}
a_{0} \mathrm{e}^{\mathrm{i} t / L}+b_{0} \mathrm{e}^{-\mathrm{i} t / L} \\
a_{1} \mathrm{e}^{\mathrm{i} t / L}+b_{1} \mathrm{e}^{-\mathrm{i} \mathrm{t} / L} \\
-a_{0} \mathrm{e}^{\mathrm{i} t / L}+b_{0} \mathrm{e}^{-\mathrm{i} t / L} \\
-a_{1} \mathrm{e}^{\mathrm{i} t / L}+b_{1} \mathrm{e}^{-\mathrm{i} t / L}
\end{array}\right)
$$

with

$$
c=(4 \sqrt{2} k / L)\left(a_{0} \bar{a}_{0}+a_{1} \bar{a}_{1}-b_{0} \bar{b}_{0}-b_{1} \bar{b}_{1} \neq 0 .\right.
$$

References

Henneaux M 1980 Gen. Rel. Grav. 12137
Krori K D, Chaudharg T and Bhattacharjee R 1982 Phys. Rev. D 251492
Radford C J and Klotz A H 1979 J. Phys. A: Math. Gen. 121205

